

BT-202

Bluetooth HADM: Perfecting Location-Centric Services.

Priyanka Sukumar | August 22nd, 2023

High Accuracy Distance Measurement

HADM – Beyond RSSI

HADM – Target Applications

PROXIMITY AWARENESS

Door locks

Keyless entry

Building access systems

Geofencing - security alerts

LOCALIZATION

Indoor asset management – hospitals, warehouses

Pet tracking inside homes

Item finding - wallet, keys, tools

Range Estimation Techniques

Draft Specifications publicly available at: www.bluetooth.com/specifications/specs/channel-sounding/

Phase-Based Ranging (PBR)

Phase

A specific point in a wave cycle, perhaps measured as the wave passes over an antenna, is known as its *phase*. Phase is measured as an angle from 0 at the start of the wave cycle to 360 degrees or 2π radians at the end of the wave cycle. Figure 8 illustrates the concept of phase.

- Tone exchange between two devices
- Phase of RF signals is a function of the frequency of the carrier and the distance traveled
 - Phase rotation due to spatial propagation determined
 - Measurements at multiple RF frequencies to resolve distance ambiguity
- Distance is calculated using the phase difference between the transmitted and received signal
- Security
 - Manipulation of phase is more complex than RSSI
- Higher accuracy than RSSI

Round Trip Timing (RTT)

 $RTT = 2 ToF = (ToA_I - ToD_I) - (ToD_R - ToA_R)$

- Packet transmission time (ToF) is measured on both the initiator and reflector side using Time-of-Arrival (ToA) and Time-of-Departure (ToD)
 - Modulated packets exchanged over multiple channels to determine ToF and estimate distance
 - Fractional timing techniques used to resolve sampling uncertainty and improve resolution
- Time cannot be reversed -> RTT increases security
- PBR is more accurate than RTT

Measurement Procedure Explained

- Connection-based 2-way ranging with encrypted Bluetooth LE connection events and secure CS events
 - Reflector exposes received signal info via GATT service.
- Interchangeable device roles (central, peripheral) and CS roles (initiator, reflector)
- Initiator configures CS procedure parameters
 - Number of channels, channel map(randomized), TX power
 - Allowed duration of connection interval, CS event
 - Measurement modes PBR, RTT
 - Trade-offs between accuracy, duration, power, number of channels
- CS Event
 - Calibration frequency offset
 - Modulated packets or tones exchanged over multiple channels
 - Channel mapping is randomized to prevent attackers
- Distance Estimation
 - Initiator parses the measured data IQ samples, time
 - Signal processing averaging, filtering outliers, detecting multipath, etc

Res

Results

Performance in Indoor Office Environment

Ceiling rail infrastructure

- Internal test environment
- Multiple stationary EFR32 devices placed at different locations
- Mobile EFR32 device for controlled measurements (repeatability)
- Challenges heavy multi-path in an indoor office setting
- Statistical analysis
 - Static measurements at multiple distances up to 30 meters
 - Hundreds of measurements per distance to determine min/max, mean, median, std, absolute error

Indoor Performance Result – PBR

Power Consumption – HADM vs UWB

PBR	Time (ms)	Current
Sleep	71.80	4.16 uA
Measurement	27.60	4.74 mA

Average power consumption over 100 ms = 1.31 mA

UWB	Time (ms)	Current
Sleep	89.89	24 uA
Measurement	10.11	26.03 mA

Average power consumption over 100 ms = 2.68 mA

Silicon Labs Offerings

BG24 and BGM241S: 2.4 GHz SoC Ideal for Bluetooth Location Services

SOCS AND MODULES

BG24 SoC

BGM241S SiP Module

SOC DEVICE SPECIFICATIONS

High-Performance Radio

- Up to +19.5 dBm TX
- -97.6 dBm RX @ BLE 1 Mbps

Efficient ARM® Cortex®-M33

- 78 MHz
- 1536kB Flash, 256kB RAM

Low Power

- 33.4 μA/MHz
- 5.0 mA TX @ 0 dBm
- 5.1 mA RX (802.15.4)
- 4.4 mA RX (BLE 1 Mbps)
- 1.3 μA EM2 sleep

Multiple protocol support

- Bluetooth (1M/2M/LR)
- Bluetooth mesh
- Proprietary 2.4 GHz

SoCs and Modules

- 5x5 QFN40
- 6x6 QFN48
- 7x7 SiP Module
- 12.9x15.0 PCB Module

DIFFERENTIATED FEATURES

+20 dBm output power

 Eliminates need for external power amplify

High Accuracy Distance Measurement

 Measures distance between connected LE devices w/ submeter accuracy

AI/ML accelerator

 Accelerates inferencing while reducing power consumption

Secure Vault High

 Protects data and devices from local and remote attacks

20-bit ADC

 16-bit ENOB for advanced sensing

Antenna Diversity

 Provides 6-8 dBm better link budget

Improved Coexistence

Ideal for gateways and hubs

PLFRCO

Eliminates need for 32 KHz xtal

SEGMENTS AND APPLICATIONS

SMART HOME

- HVAC
- Locks
- LED Lighting
- Switches
- Sensors
- Gateways, Hubs and Panels
 CONNECTED HEALTH
- Portable Medical

INDUSTRIAL AND SMART BUILDINGS

- Access Control
- HVAC
- Predictive Maintenance
- Asset Tracking

SMART CITIES

EV Charging

COMMERCIAL

- Lighting
- Access Points
- · Clinical Medical
- Indoor Real Time Location Services

Early Access and Application Development

Early Access already integrated into GSDK release in June 2023!

SOC, DEV KITS

2x BRD4198A
2x Dipole Antennas
Wireless Pro Kit
EFR32MG24 + 10dBm OPN

STACK SOFTWARE

In-house developed stack
Supports Bluetooth 5.4 features
All security features supported
New and improved Ranging features

HADM DEMO

Python based Visualization tool

RTL Library
(GATT, IQ reporting)

EFR32xG24 NCP/SoC

PBR, RTT modes

DEVELOPMENT TOOLS

Simplicity Studio
Initiator & Reflector Example
Energy Profiler + Network Analyzer
Quick Start Guide
Salesforce Support

Sample Applications – Out-of-Box Experience

BG24: Supported Features

Feature	Now	Dec 2023	2024 *
Phase based ranging	Yes	Yes	Yes
RTT based ranging	Yes	Yes	Yes
Simultaneous connections	1	4	4+
TX Power	0 dBm	0 dBm 10 dBm	0 dBm 10 dBm
Initiator	Yes	Yes	Yes
Reflector	Yes	Yes	Yes
Antenna switching	No	No	Yes
Bluetooth Qualified	No	No	Yes

^{*} Subject to change

Get Started Right Away

CONTACT SALES

Work with Silicon Labs Sales and get access to hardware

DOWNLOAD

Download Simplicity Studio 5

HADM IN ACTION

See our accurate, reliable and simple distance estimating solution in action!

THANK YOU